US009274946B2

a2 United States Patent

Krauss

US 9,274,946 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PRE-LEAK DETECTION SCAN TO IDENTIFY
NON-POINTER DATA TO BE EXCLUDED
FROM A LEAK DETECTION SCAN

(75) Inventor: Kirk J. Krauss, San Jose, CA (US)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1525 days.
(21) Appl. No.: 12/649,832
(22) Filed: Dec. 30, 2009
(65) Prior Publication Data
US 2011/0161614 Al Jun. 30, 2011
(51) Imt.ClL
GO6F 12/02 (2006.01)
GO6F 7/02 (2006.01)
(52) US.CL
CPC GO6F 12/0253 (2013.01); GO6F 2212/702
(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,644,709 A * 7/1997 Austin ... 714/53
8,566,797 B2* 10/2013 Pedersen 717/128

2005/0235127 Al* 10/2005 Muthiahetal. 711/170
2008/0301646 Al* 12/2008 Gupta . 717127
2010/0254615 Al* 10/2010 Kantoretal. ... 382/218

OTHER PUBLICATIONS

Hirzel, Martin, Amer Diwan, and Antony Hosking. “On the useful-
ness of liveness for garbage collection and leak detection.” ECOOP
2001—Object-Oriented Programming. Springer Berlin Heidelberg,
2001. 181-206.*

* cited by examiner

Primary Examiner — Yaima Rigol
(74) Attorney, Agent, or Firm — Cuenot, Forsythe & Kim,
LLC

(57) ABSTRACT

A computer-implemented method of detecting memory that
may be reclaimed from application data objects that are no
longer in use. When at least a first virtual memory region is
newly committed for heap block storage, a pre-leak detection
scan of other virtual memory regions can be performed to
identify at least one non-pointer data item in the other virtual
memory regions, the non-pointer data item comprising data
that corresponds to an address of a memory location within
the first virtual memory region, but that is not a memory
pointer. A leak detection scan can be performed to identify
potential memory pointers, wherein the identified non-
pointer data item is excluded from the identified potential
memory pointers. A list of leaked heap blocks can be output.
Each leaked heap block can exclusively comprise memory
locations that do not have a corresponding potential memory
pointer.

20 Claims, 4 Drawing Sheets

CPUT is running

| Detect heap memory de-allocation |
304

1

Cease tracking the heap block(s) that is/are de-allocated
306

308

Has a virtual
memory region been decommitted
due to the de-allocation?

310

Identify the heap memory region that was/were
decommitted due to the de-allocation

i

In the non-pointer tracking structures, identify each non-
pointer data that contains a value that correlates to an
address of a memory location in a decommitted heap

memory region, and remove these non-pointer tracking
structures for those non-pointer data
312

l.—

Indicate to the CPUT that the de-allocation of the heap
memory region was success!

CPUT continues

to run

316

U.S. Patent Mar.1,2016 Sheet 1 of 4 US 9,274,946 B2
100
130
0\ 135
y
System Bus
115
y y Y
A 4
Local Memory
Processor 120 Bulk Storage
105 Device
Memory Elements 125
110
4 J
h 4
Runtime Analysis Instrumented
and Control CPUT
Modulc 140
145
Tracking
Structures
150

FIG. 1

U.S. Patent Mar. 1, 2016 Sheet 2 of 4 US 9,274,946 B2

[\
o

CPUT is running

202

A

Detect a heap memory allocation and track the new heap
block(s)
204

Was a
new virtual memory region No
committed to hold the newly allocated
heap block?
206

Yes

Identify as non-pointer data any data in other CPUT-
writable virtual memory regions that correlates to an
address of a memory location in the newly committed
virtual memory region
208

A

For each such non-pointer data that is identified, add the
non-pointer data and the address of its location in memory
to a non-pointer tracking structure
210

dl
.

A

Return to the CPUT routine that initiated the memory
allocation request a pointer to the new heap block
212

CPUT continues

to run
214

FIG. 2

U.S. Patent Mar. 1, 2016 Sheet 3 of 4 US 9,274,946 B2

300

CPUT is running

302

A

Detect heap memory de-allocation
304

A

Cease tracking the heap block(s) that is/are de-allocated
306

Has a virtual
memory region been decommitted

due to the de-allocation?
308

No

Identify the heap memory region that was/were
decommitted due to the de-allocation
310

A

In the non-pointer tracking structures, identify each non-
pointer data that contains a value that correlates to an
address of a memory location in a decommitted heap

memory region, and remove these non-pointer tracking
structures for those non-pointer data
312

<
v
Indicate to the CPUT that the de-allocation of the heap

memory region was successful
314

A 4

CPUT continues
to run

316

FIG. 3

U.S. Patent Mar. 1, 2016 Sheet 4 of 4 US 9,274,946 B2

N
[a)

CPUT is running

or exiting
402

A

Trigger a memory leak scan
404

A
In the CPUT-writable virtual memory regions, identify
cach memory location that contains data which
corresponds to an address of a tracked heap block
406

A 4

For each of the identified memory locations, determine
whether the memory address of the memory location and/
or the data contained at the memory location is contained

in the non-pointer tracking structure
408

A

Identify as being leaked each tracked heap block that does
not correspond to data contained in any memory location
outside of the heap block, other than data contained in
memory locations identified in non-pointer tracking
structures, and for which there is no valid pointer
associated

410

A
Output a list of the tracked heap blocks identified as being
leaked

412

CPUT continues
to run or exit
414

FIG. 4

US 9,274,946 B2

1
PRE-LEAK DETECTION SCAN TO IDENTIFY
NON-POINTER DATA TO BE EXCLUDED
FROM A LEAK DETECTION SCAN

BACKGROUND

The embodiments disclosed within this specification relate
to runtime analysis of application program code. More par-
ticularly, the embodiments relate to detecting memory leaks
in an application.

A memory leak is a particular type of memory consump-
tion by an application where the application is unable to
appropriately release system memory it has acquired. A
memory leak can diminish the performance of the system on
which the application is instantiated by reducing the amount
of available memory. If too much of the allocated memory
remains un-released, the amount of available memory will be
excessively depleted, and all or part of the system typically
will cease to function properly. For example, the application
may fail or the system may slow down unacceptably due to
thrashing, which is a degenerate situation on the system
where increasing resources are used to do a decreasing
amount of work. A software application that leaks memory
excessively can run out of available virtual memory and can,
as a result, cease to function, which is commonly known as a
crash.

Techniques such as garbage collection are sometimes used
in an attempt to reclaim memory from application data
objects that are no longer in use. Garbage collection works
effectively only in certain environments such those that are
available for Java and managed code. Garbage collection is
not very efficacious for native code (ie. C/C++) programs.
The difference is that Java/managed code treats all object
references dynamically such that the objects are relocatable
when a garbage collection occurs. The garbage collector rec-
ognizes all references as such, and can clean up any objects
whose reference count has dropped to zero. Native code pro-
grams use actual data pointers that do not change while the
program is running; the objects referenced by these static
pointers are not reference counted and thus can be leaked if
the situation arises where no pointers reference them.

BRIEF SUMMARY OF THE INVENTION

The embodiments disclosed within this specification relate
to detecting memory that may be reclaimed from application
data objects that are no longer in use. When at least a first
virtual memory region is newly committed for heap block
storage, a pre-leak detection scan of other virtual memory
regions can be performed to identify at least one non-pointer
data item in the other virtual memory regions, the non-pointer
data item comprising data that corresponds to an address of a
memory location within the first virtual memory region, but
that is not a memory pointer. A leak detection scan can be
performed to identify potential memory pointers, wherein the
identified non-pointer data item is excluded from the identi-
fied potential memory pointers. A list of leaked heap blocks
can be output. Each leaked heap block can exclusively com-
prise memory locations that do not have a corresponding
potential memory pointer.

Another embodiment of the present invention also can
include method of reclaiming memory from application data
objects that are no longer in use. Allocation of a heap block
triggering a first virtual memory region to be newly commit-
ted for heap block storage can be detected. A pre-leak detec-
tion scan of other virtual memory regions can be performed to
identify at least one non-pointer data item in the other virtual

10

15

20

25

30

35

40

45

55

60

65

2

memory regions, the non-pointer data item comprising data
that corresponds to an address of a memory location within
the first virtual memory region, but that is not a memory
pointer. A leak detection scan can be performed. The leak
detection scan can include determining whether the non-
pointer data has changed since the first virtual memory region
was committed and identifying potential memory pointers,
wherein the identified non-pointer data item is excluded from
the identified potential memory pointers when the non-
pointer data has changed since the first virtual memory region
was committed. The method also can include outputting a list
of leaked heap blocks, each leaked heap block exclusively
comprising memory locations that do not have a correspond-
ing potential memory pointer.

Yet another embodiment of the present invention can
include a computer program product including a computer-
usable medium having computer-usable program code that,
when executed, causes a machine to perform the various steps
and/or functions described herein.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a system that imple-
ments memory leak detection in accordance with an embodi-
ment of the present invention.

FIG. 2 is a flow chart illustrating a method of identifying
non-pointer data in accordance with an embodiment of the
present invention.

FIG. 3 is a flow chart illustrating a method of identifying
non-pointer data in accordance with another embodiment of
the present invention.

FIG. 4 is a flow chart illustrating a method of performing
memory leak detection in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION OF THE INVENTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage

US 9,274,946 B2

3

medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electromag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The program code may execute entirely on
the user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

4

The present invention relates to a method and a system
which improves the efficacy of reclaiming memory from
application data objects that are no longer in use. In illustra-
tion, by coincidence, some data within virtual memory loca-
tions may have values that correlate to other locations within
virtual memory, and thus may be mistakenly interpreted as
being pointers to those virtual memory locations, even though
the data are never treated as pointers. For example, a hexa-
decimal data item representing the text “hello” may contain
the hexadecimal values 68 65 6¢ 6¢ 6f. These hexadecimal
values may correlate to an actual address of a memory loca-
tion in a heap block, namely 0x68656¢6¢6f. So, even though
that hexadecimal data represents text, during a conventional
leak scan the hexadecimal values may be misinterpreted as
being a memory pointer to the memory location
0x68656¢6¢6f in an allocated heap block. Accordingly, the
leak scan will usually interpret the hexadecimal data as indi-
cating that the memory location 0x68656¢6¢6f is still being
used by the CPUT, although it may not be, and result in an
undetected memory leak.

In accordance with the present invention, when a requested
heap memory allocation causes virtual memory to be com-
mitted, a pre-leak detection scan can be performed to identify
within other writable virtual memory regions data that could
be mistakenly interpreted as being memory pointers to
memory locations within the newly committed virtual
memory region, but are not. This data can be identified as
non-pointers and tracked. For instance, the locations of the
non-pointers within virtual memory can be associated with
the memory locations to which the data could potentially be
misinterpreted as pointing, or associated with the heap
memory region itself, and such associations can be main-
tained in a suitable non-pointer tracking structure. The iden-
tification of the non-pointers can be performed before the
existence of any new heap blocks allocated in a newly com-
mitted virtual memory region has been made known to the
application that has requested the allocation of the heap
blocks.

When a leak scan in accordance with the present invention
is later performed and the virtual memory regions are
searched to identify potential pointers, the virtual memory
locations that were tracked when the virtual memory region
was committed for heap block storage can be identified. If the
data in those virtual memory locations has not changed since
the virtual memory region was committed, the data contained
in the tracked virtual memory locations can be considered
non-pointers and ignored by the leak scanner as it determines
whether allocated heap memory is referenced by any point-
ers. Thus, when a virtual memory location contains data that
otherwise would be mistaken as pointing to allocated
memory, the data contained in that virtual memory location
can be treated as non-pointer data when a leak scan is per-
formed. Since that data is not a real memory pointer, ignoring
that data during the leak scan improves the accuracy of the
leak scan by preventing false negatives among the leak scan
results.

FIG. 1is afirst block diagram illustrating a system 100 that
implements memory leak detection in accordance with one
embodiment of the present invention. The system 100 can
include at least one processor 105 coupled to memory ele-
ments 110 through a system bus 115. As such, the system 100
can store program code within the memory elements 110. The
processor 105 can execute the program code accessed from
the memory elements 110 via system bus 115. In one aspect,
for example, the system 100 can be implemented as computer
that is suitable for storing and/or executing program code. It
should be appreciated, however, that the system 100 can be

US 9,274,946 B2

5

implemented in the form of any system comprising a proces-
sor and memory that is capable of performing the functions
described within this specification.

The memory elements 110 can include one or more physi-
cal memory devices such as, for example, local memory 120
and one or more bulk storage devices 125. Local memory 120
refers to random access memory or other non-persistent
memory device(s) generally used during actual execution of
the program code. The bulk storage device(s) 125 can be
implemented as a hard drive or other persistent data storage
device. The system 100 also can include one or more cache
memories (not shown) that provide temporary storage of at
least some program code in order to reduce the number of
times program code must be retrieved from the bulk storage
device 125 during execution.

The memory elements 110 can serve as physical storage for
virtual memory regions which are collectively used by each
running computer program process as a virtual memory
space. As used herein, virtual memory is memory that appears
to as a logical address space to a running computer program
process. The virtual memory may be contained in the local
memory 120 and/or in the bulk storage device 125.

The memory elements 110 also can serve as physical stor-
age for allocated memory, which may be allocated as heap
blocks. Such memory can be dynamically allocated during
runtime of a computer program. As known to those skilled in
the art, dynamic memory allocation can distribute ownership
of memory resources among many pieces of data and code.
The memory that is allocated need not be contiguous. The use
of dynamic memory allocation is beneficial for maximizing
the use of limited memory resources, but can lead to obstacles
when attempting to recover allocated memory locations
which are no longer being used, as previously described. The
present invention addresses these issues.

Input/output (I/O) devices such as a keyboard 130, a dis-
play 135, and a pointing device (not shown) optionally can be
coupled to system 100. The /O devices can be coupled to the
system 100 either directly or through intervening I/O control-
lers. Network adapters (not shown) also can be coupled to
system 100 to enable system 100 to communicate with other
systems, computer systems, remote printers, and/or remote
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are
examples of different types of network adapters that can be
used with system 100.

As pictured in FIG. 1, the memory elements 110 can serve
as physical storage for an instrumented computer program
under test (CPUT) 140. The instrumented CPUT 140, being
implemented in the form of executable program code, can be
executed by the system 100 for the purposes of performing
runtime analysis in accordance with the methods described
herein.

The memory elements 110 also can store a runtime analy-
sis and control module 145. To generate the instrumented
CPUT 140, the runtime analysis and control module 145 can
instrument the CPUT to control and change the behavior of
the CPUT in useful ways. For example, instrumentation code
can be added to the CPUT to automatically generate data for
use in monitoring the instrumented CPUT 140. Instrumenta-
tion code also can be added to the CPUT to pause, disable and
enable threads and functions within the CPUT, as well as
perform other tasks, in response to an event or in response to
a user request. Notably, the instrumentation code also can
include functions and/or methods that identify memory allo-
cations, memory deallocations, commitment of virtual
memory regions committed for storage of heap memory
blocks, and decommitment of such virtual memory regions.

10

15

20

25

30

35

40

45

50

55

60

65

6

Corresponding data can be communicated to the runtime
analysis and control module 145, which can track the memory
allocations and deallocations, as well as commitment and
decommitment of virtual memory regions committed for
storage of heap memory blocks.

When the CPUT 140 is executed, the runtime analysis and
control module 145 also can a perform leak detection scan of
the virtual memory physically stored in memory elements
110 to identify allocated memory locations which are no
longer being used by the instrumented CPUT 140, but which
have not been reclaimed as available memory. The leak detec-
tion scan can be performed in response to an occurrence of an
event within the CPUT 140, for example a heap destroy event,
pursuant to a user request, at the end of the run of the CPUT
140, or at any other suitable time.

In addition, the runtime analysis and control module 145
can perform a pre-leak detection scan. The pre-leak detection
scan can be performed prior to the leak detection scan, for
instance when requests are received to allocate heap blocks,
but before the CPUT is made aware of the allocated heap
blocks. Such requests can be generated by the CPUT 140, or
an operating system on which the CPUT 140 is instantiated.
For example, instrumented code within the CPUT 140 can
intercept calls requesting heap block allocation, and commu-
nicate such calls to the runtime analysis and control module
145. In another embodiment, the runtime analysis and control
module 145 can detect such calls for heap block allocation
within the operating system. A heap block allocation request
can be detected, for instance, when a standard heap memory
allocation routine such as the malloc() routine is invoked.
Standard heap memory allocation routines are well known to
those skilled in the art.

The pre-leak detection scans can identify data in virtual
memory that contain values which correlate to addresses of a
memory locations in the virtual memory regions committed
for storage of heap memory blocks. When a new heap virtual
memory region has just been committed, such data are not
valid memory pointers, and can be identified as non-pointer
data. Accordingly, when a leak scan is later performed to
detect memory pointers to locations in the virtual memory
region, the non-pointer data can be ignored. In one embodi-
ment, only non-pointer data that has not changed since the
virtual memory region was committed will be ignored. That
is, if the data has changed, it is possible that a valid memory
pointer has been written to that location in virtual memory, so
the re-written data still can be identified in the leak scan if it
appears to be a valid memory pointer.

The memory elements 110 also can store a non-pointer
tracking structure 150 that tracks the non-pointer data. The
non-pointer tracking structure 150 can be implemented in any
suitable manner. For example, the non-pointer tracking struc-
ture 150 can be implemented as a data table, a hash table, or
any other suitable data file.

Within the non-pointer tracking structure 150 locations of
the non-pointer data can be associated with a virtual memory
region committed for storage of heap memory blocks, or the
memory locations within the virtual memory region to which
the non-pointer data correlates. When the leak detection scan
is performed, the data contained in the non-pointer tracking
structure 150 can be accessed in order to identify the memory
locations of the non-pointer data so that the non-pointer data
can be excluded from a list of potential memory pointers
identified during the leak detection scan. In one arrangement,
when data at the memory locations changes, the data associ-
ating the non-pointer data with the virtual memory region, or
the memory locations within the virtual memory region, can
be removed from the non-pointer tracking structure 150. Fur-

US 9,274,946 B2

7

ther, when the virtual memory region is decommitted, all data
corresponding to the virtual memory region, or the memory
locations within the virtual memory region, can be removed
from the non-pointer tracking structure 150.

As used herein, “outputting” and/or “output” can mean
storing in memory elements 110, for example, writing to afile
stored in memory elements 110, writing to display 135 or
other peripheral output device, playing audible notifications,
sending or transmitting to another system, exporting, or the
like.

FIG. 2 is a flow chart illustrating a method 200 of identi-
fying non-pointer data in accordance with an embodiment of
the present invention. The method 200 can begin at step 202
in a state in which the CPUT is running. At step 204, a heap
memory allocation can be detected or intercepted, and new
heap blocks that are allocated can be tracked. For example, in
the C or C++ programming environment, invocation of the
malloc() library function by the CPUT can be detected or
intercepted. Corresponding tracking structures that are con-
figured to indicate heap blocks that are allocated and deallo-
cated can be updated and/or created to indicate the heap block
allocations.

Referring to decision block 206, a determination can be
made as to whether a new virtual memory region was com-
mitted to hold the newly allocated heap block. If a new heap
memory region was not committed, the method 200 can pro-
ceed to step 212, which will be described. If, however, a new
heap memory region was committed, at step 208 any data in
other CPUT-writable virtual memory regions that correlates
to an address of a memory location in the newly committed
virtual memory region can be identified as non-pointer data.
The process implemented at step 208 can be referred to as a
“pre-leak detection scan.”

Atstep 210, for each non-pointer data item that is identified
by the pre-leak detection scan, the non-pointer data item, as
well as its address in the CPUT-writable virtual memory, can
be added to a non-pointer tracking structure. For example,
each non-pointer data item that is identified can be added to a
list of non-pointers. At step 212, a pointer to the new heap
block can be returned to the CPUT routine that initiated the
memory allocation request. At step 214, the CPUT can con-
tinue to run.

FIG. 3 is a flow chart illustrating a method 300 of identi-
fying non-pointer data in accordance with another embodi-
ment of the present invention. The method 300 can begin at
step 302 in a state in which the CPU'T is running. At step 304,
aheap memory deallocation can be detected. For example, in
the C or C++ programming environment, invocation of the
free() library function by the CPUT can be detected. The
tracking structures that are configured to track heap block
allocation and deallocation can be updated to indicate that the
heap block is no longer allocated. At step 306, tracking of the
heap block(s) that is/are deallocated in response to the request
can cease.

Referring to decision box 308, a determination can be
made as to whether a virtual memory region been decommit-
ted due to the deallocation. If a virtual memory region has not
been decommitted, the method 300 can proceed to step 314,
which will be described. If, however, at least one virtual
memory region has been decommitted, at step 310 the heap
memory region(s) that was/were decommitted due to the
deallocation can be identified and tracked.

At step 312, in the non-pointer tracking structures 150,
each non-pointer data item that contains a value that corre-
lates to an address of a memory location in a decommitted
memory region can be identified. These non-pointer tracking
structures 150 can be deleted or removed from their corre-

10

15

20

25

30

35

40

45

50

55

60

65

8

sponding data set. For example, if each non-pointer tracking
structure 150 corresponds to a record in a data table, the
appropriate records can be removed or deleted. At step 314,
an indication can be provided to the CPUT to indicate that the
deallocation of the heap memory region was successful. At
step 316, the CPUT can continue to run.

FIG. 4 is a flow chart illustrating a method 400 of perform-
ing memory leak detection in accordance with an embodi-
ment of the present invention. The method 400 can begin at
step 402 in a state in which the CPUT is running or exiting. At
step 404, a memory leak scan can be triggered. The memory
leak scan can be triggered in response to the CPUT exiting, in
response to a user request, in response to an automated
request generated by the runtime analysis and control mod-
ule, or triggered in any other suitable manner.

At step 406, in the CPUT-writable virtual memory regions,
each memory location that contains data which corresponds
to an address of a tracked heap block can be identified. At step
408, for each of the identified memory locations, a determi-
nation can be made as to whether the memory address of the
memory location and/or the data contained at the memory
location is contained in a non-pointer tracking structure 150.

At step 410 each tracked heap block that does not corre-
spond to data contained in any memory location outside of the
heap block, other than data contained in memory locations
identified in non-pointer tracking structures, and for which
there is no valid pointer associated, can be identified as being
leaked. A valid pointer can be a data item not located within
the heap block that identifies an address within the heap
block. Such a valid pointer can be a data item found during the
process performed at step 406, but at step 408 was not iden-
tified as being contained in the non-pointer tracking structure.

At step 412, a list of the tracked heap blocks identified as
being leaked can be output. For example, the list can be output
to the memory elements, the display, or output in any other
suitable manner. At step 414, the CPUT can continue to run or
to exit.

At this point, it should be noted that steps 406-410 can be
performed using an algorithm that compares the value at each
location in CPUT-writable virtual memory with the base and
extent of each allocated heap block whose creation has been
detected or intercepted during the run. For each value in
CPUT-writable virtual memory that thus references a tracked
heap block, the algorithm can search the non-pointer tracking
structures 150 to determine whether there is a corresponding
non-pointer tracking structure 150 and, if so, treat that loca-
tion in CPUT-writable virtual memory as irrelevant to the leak
detection scan. The algorithm then can repeat these steps for
each memory location until all of the memory locations have
been processed in this manner.

It also should be noted that those skilled in the art will
appreciate that a number of other processes can be imple-
mented in conjunction with the processes presented herein.
For example, additional leak detection processes known in
the art also can be performed in addition to the steps 402-414
presented in F1G. 4, and can rely upon the results generated by
any such steps.

Like numbers have been used to refer to the same items
throughout this specification. The flowchart and block dia-
grams in the Figures illustrate the architecture, functionality,
and operation of possible implementations of systems, meth-
ods and computer program products according to various
embodiments of the present invention. In this regard, each
block in the flowchart or block diagrams may represent a
module, segment, or portion of code, which comprises one or
more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some

US 9,274,946 B2

9

alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart illus-
tration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,”“an,” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:
1. Within a system comprising a processor and a memory,
a method of detecting memory that may be reclaimed from
application data objects that are no longer in use, the method
comprising:
when at least a first virtual memory region is newly com-
mitted for heap block storage, performing a pre-leak
detection scan of other virtual memory regions to iden-
tify at least one non-pointer data item in the other virtual
memory regions, the non-pointer data item comprising
datathat corresponds to an address of a memory location
within the first virtual memory region, but that is not a
memory pointer;
performing a leak detection scan identifying potential
memory pointers, wherein the identified non-pointer
data item is excluded from the identified potential
memory pointers; and
outputting a list of leaked heap blocks, each leaked heap
block exclusively comprising memory locations that do
not have a corresponding potential memory pointer.
2. The method of claim 1, further comprising:
before performing the pre-leak detection scan, detecting
commitment of the first virtual memory region.
3. The method of claim 1, further comprising:
identifying a location of the non-pointer data item within
the other virtual memory regions.

5

20

25

30

35

40

45

50

55

60

65

10

4. The method of claim 3, further comprising:

creating a non-pointer tracking structure that associates the
non-pointer data item with the address of the memory
location within the first virtual memory region.

5. The method of claim 4, wherein the non-pointer tracking
structure creates an association between the non-pointer data
and the first virtual memory region.

6. The method of claim 4, further comprising:

when the first virtual memory region is decommitted,

removing any corresponding non-pointer tracking struc-
tures from a set of non-pointer tracking structures.

7. The method of claim 1, wherein

the list of leaked heap blocks comprises the first virtual

memory region.

8. Within a system comprising a processor and a memory,
a method of detecting memory that may be reclaimed from
application data objects that are no longer in use, the method
comprising:

detecting allocation of a heap block triggering a first virtual

memory region to be newly committed;

performing a pre-leak detection scan of other virtual

memory regions to identify at least one non-pointer data

item in the other virtual memory regions, the non-

pointer data item comprising data that corresponds to an

address of a memory location within the first virtual

memory region, but that is not a memory pointer;

performing a leak detection scan comprising:

determining whether the non-pointer data has changed
since the first virtual memory region was committed;
and

identifying potential memory pointers, wherein the
identified non-pointer data item is excluded from the
identified potential memory pointers when the non-
pointer data has changed since the first virtual
memory region was committed; and

outputting a list of leaked heap blocks, each leaked heap
block exclusively comprising memory locations that
do not have a corresponding potential memory
pointer.

9. The method of claim 8, further comprising:

identifying a location of the non-pointer data item within

the other virtual memory regions.

10. The method of claim 8, further comprising:

creating a non-pointer tracking structure that associates the

non-pointer data item with the address of the memory
location within the first virtual memory region.

11. The method of claim 10, further comprising:

detecting deallocation of a heap block triggering the first

virtual memory region to be decommitted, and
removing any corresponding non-pointer tracking struc-
tures from a set of non-pointer tracking structures.

12. The method of claim 10, further comprising:

via the non-pointer tracking structure, creating an associa-

tion between the non-pointer data and the first virtual
memory region.

13. The method of claim 8, wherein

the list of leaked heap blocks comprises the first virtual

memory region.

14. A computer program product comprising

a computer-usable storage device having stored therein

computer-usable program code for reclaiming memory
from application data objects that are no longer in use,
the computer-usable program code, which when executed
by a computer hardware system, causes the computer
hardware system to perform:
performing a pre-leak detection scan when a first virtual
memory region is newly committed to identify at least
one non-pointer data item in other virtual memory

US 9,274,946 B2

11

regions that correlates to an address of a memory
location in the first heap memory region holding a
newly allocated heap block;

when at least a first virtual memory region is committed
for heap block storage, performing a pre-leak detec-
tion scan of other virtual memory regions to identify
at least one non-pointer data item in the other virtual
memory regions, the non-pointer data item compris-
ing data that corresponds to an address of a memory

location within the first virtual memory region, but 10

that is not a memory pointer;

performing a leak detection scan identifying potential
memory pointers, wherein the identified non-pointer
data item is excluded from the identified potential
memory pointers; and

outputting a list of leaked heap blocks, each leaked heap
block exclusively comprising memory locations that
do not have a corresponding potential memory
pointer, wherein

the computer-usable storage device does not consist of a

transitory, propagating signal.

15. The computer program product of claim 14, wherein
the computer-usable program code further causes the com-
puter hardware system to perform:

before performing the pre-leak detection scan, detecting

allocation of a heap block triggering the first virtual
memory region to be committed.

20

25

12

16. The computer program product of claim 14, wherein
the computer-usable program code further causes the com-
puter hardware system to perform:

identifying a location of the non-pointer data item within

the other virtual memory regions.

17. The computer program product of claim 16, wherein
the computer-usable program code further causes the com-
puter hardware system to perform:

creating a non-pointer tracking structure that associates the

non-pointer data item with the address of the memory
location within the first virtual memory region.

18. The computer program product of claim 17, wherein

the non-pointer tracking structure creates an association

between the non-pointer data and the first virtual
memory region.

19. The computer program product of claim 17, wherein
the computer-usable program code further causes the com-
puter hardware system to perform:

removing, upon the first virtual memory region being

decommitted, the non-pointer tracking structure from a
set of non-pointer tracking structures.

20. The computer program product of claim 19, wherein

the list of leaked heap blocks comprises the first virtual

memory region.

